Skip to main content

Highspeed-Fotografie – immer am Limit

Das Ziel der Highspeed- oder Kurzzeitfotografie ist, schnell bewegte Objekte scharf aufzunehmen. Die Schärfe des Bildes wird dabei von vielen Kriterien bestimmt, z.B. von der Fokussierung und den Abbildungsfehlern des Objektivs. Am meisten wirkt sich aber die Bewegungsunschärfe aus, gegen die es nur ein einziges wirkliches »Gegenmittel« gibt, nämlich eine möglichst kurze Belichtungszeit. Je schneller das Fotoobjekt, desto kürzer muss logischerweise auch die Belichtungszeit sein.

Aber was ist schnell? Für den einen ist es schon ein Fahrradfahrer, für den anderen erst ein Rennwagen. Aus fotografischer Sicht kommt es aber gar nicht auf die absolute Geschwindigkeit des Objekts an, wichtig ist nur die Geschwindigkeit, mit der sich das Abbild des Fotoobjekts über den Bildsensor bewegt. Die Skizze rechts soll das verdeutlichen. Sie zeigt Objekte mit extrem unterschiedlichen Eigengeschwindigkeiten, aber gleicher Bildgeschwindigkeit. Ein Insekt, das in 30cm Abstand mit einer Geschwindigkeit von 1m/s vorbeifliegt, ist in der Bildebene genauso schnell wie ein Formel1-Wagen, der in dreißig Meter Entfernung mit 360km/h vorbeirast. Oder wie ein Düsenjet mit Schallgeschwindigkeit in 100m Entfernung. Man könnte auch sagen, alle Objekte haben dieselbe »Winkelgeschwindigkeit«, wobei sich der Ursprung im Objektiv befindet, etwa im Abstand der Brennweite vor dem Sensor. Damit wird auch klar, warum kurzbrennweitige Objektive weniger anfällig für Bewegungsunschärfe sind als langbrennweitige – ihre Bildgeschwindigkeit ist geringer.

Verschiedene Objektgeschwindigkeiten, aber gleiche Bildgeschwindigkeit

Welche Belichtungszeit ist nun notwendig, damit das Bild auf dem Sensor trotz Bewegung scharf wird? Dazu muß zuerst festgelegt werden, was »scharf« ist. Ein gängiges Maß dafür ist der zulässige Durchmesser des Unschärfekreises, wie er z.B. bei der Bestimmung der Schärfentiefe herangezogen wird. Üblicherweise wird er mit 1/1500 der Bilddiagonale angenommen, bei einem APS-C-Sensor also D=0,018mm. Für ein scharfes Bild darf die Bewegungsunschärfe diesen Wert nicht überschreiten. Die Belichtungszeit t ergibt sich dann aus der einfachen Beziehung Zeit gleich Weg durch Geschwindigkeit, wobei als Weg der Durchmesser des Zerstreuungskreises D und v als Geschwindigkeit des Bildes eingesetzt wird. Damit anstelle der Hilfsgröße Bildgeschwindigkeit die reale Objektgeschwindigkeit vobj eingegeben werden kann, muß sie mit dem Abbildungsmaßstab β multipliziert werden.
Vorausgesetzt, die Bewegung erfolgt rechtwinklig zur optischen Achse, berechnet sich die notwendige Belichtungszeit nach der rechts stehenden Gleichung.

Im Falle der Biene ergibt sich mit dem Abbildungsmaßstab β=1/5 (0,2) eine Belichtungszeit t=90µs oder 1/11000s. Dieselbe Zeit erhält man auch beim Flugzeug, das zwar 300mal schneller, aber auch 300mal weiter entfernt ist und deshalb 300mal kleiner abgebildet wird.

Mindest-Belichtungszeit

Der Blitz als unverzichtbares Hilfsmittel

Für solche kurzen Belichtungszeiten ist ein normaler mechanischer Schlitzverschluß nicht geeignet. Aber auch ein moderner elektronischer Verschluß, der vielleicht 1/32000s oder noch weniger schafft, führt hier nicht weiter, weil auch der hellste Sonnenschein nicht hell genug für eine korrekte Belichtung ist. Das alternative Anheben der ISO-Empfindlichkeit würde die Bildqualität verschlechtern, ganz abgesehen davon, daß die erforderlichen Belichtungszeiten meist noch wesentlich kürzer sind. Deshalb führt am Blitz kein Weg vorbei.
Das Blitzgerät muß eine kurze Blitzzeit mit möglichst hoher Energie kombinieren – zwei Anforderungen, die nur schwer gleichzeitig zu erfüllen sind. Die früher oft eingesetzten Hochspannungs-Blitzgeräte besaßen kleine Blitzkondensatoren und kompensierten die geringe Kapazität mit einer hohen Spannung von mehreren Kilovolt. Diese Geräte besaßen eine sehr kurze Blitzzeit bei hoher Energie, sind aber aus Sicherheitsgründen nahezu »ausgestorben«. Moderne Geräte besitzen hochkapazitive Blitzkondensatoren bei niedriger Spannung, ihre Blitzzeit ist deshalb eher lang. Auf kurze Blitzzeiten kommen sie durch schlichtes Abschalten des Stromes mittels eines elektronischen Schalters.
Damit können zwar im manuellen Teilleistungsmodus sehr kurze Blitzzeiten erreicht werden, allerdings auf Kosten der Blitzenergie.
Automatikfunktionen wie TTL, iTTL oder ähnliche sind unnötig und werden im manuellen Betrieb ohnehin abgeschaltet. Eine evtl. vorhandene Stromsparautomatik muß auch ausgeschaltet werden, damit das Gerät im entscheidenden Moment seinen Betrieb nicht einstellt.
Viele ältere Geräte, die nicht mehr mit den neuen digitalen Kameras kompatibel sind, erfüllen diese Anforderungen immer noch gut. Deshalb sind Blitzgeräte aus der »analogen« Zeit eine gute und meist auch preiswerte Wahl für die Highspeed-Fotografie.
Hier eine kleine Auswahl von getesteten Geräten (manueller Teilleistungsbetrieb, kürzeste Blitzzeit, t50):

flash duration Die Blitzzeit t50 wird zwischen den beiden 50%-Werten auf der steigenden und fallenden Flanke der Emissionskurve gemessen. Weil damit bereits über 80% der bildwirksamen Blitzenergie berücksichtigt wird, hat sich t50 als »inoffizieller« Standard durchgesetzt. Ob aber t50 oder t10 hat auf den Blitz selbst keinen Einfluß
Metz 36CT-3
Nikon SB-24
Nikon SB-25
Nikon SB-26
Nikon SB-800
Metz 40MZ-3i

Man sieht, daß nur das SB-24 die wünschenswerte Blitzzeit merklich überschreitet. Allerdings gehörte es als Systemblitz zur Nikon F4 und ist damit schon 30 über Jahre alt. Daß das Alter aber kein automatisches Ausschlußkriterium sein muß, beweist der noch ältere Metz 36CT-3. Im Winder-Modus erreicht er beachtliche 1/40000s. Die Nikon-Blitze SB-25 und SB-26 sind nur unwesentlich langsamer. Das SB-800 als relativ neues Gerät bietet eine hohe Leitzahl und eine recht kurze Blitzzeit von 1/38000s. Ungekrönter König ist aber der ebenfalls schon recht betagte Metz 40MZ-3i, der es auf die sehr kurze Blitzzeit von 1/50000s bringt. Dank seiner kompakten Bauform und hohen Basis-Leitzahl von 50 (bei Reflektorstellung 105mm) ist er der ideale Blitz für die Highspeed-Fotografie. Die »abgespeckte« Version 40MZ-1 entspricht bis auf den fehlenden Zweitreflektor dem Modell -3i. Das ältere Modell 40MZ-2 unterscheidet sich im Reflektor, der sich nur bis 80mm einstellen läßt.

Kombination mehrerer Blitzgeräte

Weil die Lichtenergie der »abgeschnittenen« Blitze sehr gering ist, müssen i.a. mehrere Blitzgeräte kombiniert und synchron ausgelöst werden. Dafür kommen häufig optische Slaveauslöser zum Einsatz, die es in vielen Bauformen gibt. Bei manchen Blitzgeräten wie dem Nikon SB-26 oder SB-800 sind solche Sensoren bereits eingebaut.
Obwohl sie sehr einfach anzuwenden sind, haben sie einen entscheidenden Nachteil: Ihre recht große und von Typ zu Typ unterschiedliche Verzögerungszeit. Was bei »normalen« Fotos nicht ins Gewicht fällt, kann aber im Highspeedbereich zu unschönen Effekten führen. Z.B. besitzt der bekannte Slaveauslöser Nikon SU-4 eine Verzögerungszeit von ca. 40µs, das Nikon SB-26 mit eingebauter Slave-Zelle liegt bei ca. 80µs. Wird mit einer solchen Kombination ein schnell bewegtes Motiv fotografiert, kommt es unweigerlich zu unschönen Doppelbelichtungen. 

→ Wenn optische Auslöser schon verwendet werden, sollten alle vom gleichen Typ sein.

Die beiden 40MZ blitzen wegen des SU-4 im Abstand von 42µs. Das Ergebnis ist eine deutlich sichtbare Doppelkontur auf der sich drehenden CD

​​​​​​​​Die bessere Alternative ist in jedem Fall die Auslösung mittels Kabel. Obwohl hier keine Verzögerung auftritt, kann man sich dennoch nicht sicher sein, daß die Blitze synchron zünden. Das liegt an den Blitzgeräten selbst, die oftmals eine »eingebaute« Auslöseverzögerung besitzen. Besondes häufig betroffen sind von diesem Effekt neuere »überelektronifizierte« Blitzgeräte. Je nach Größe dieser Asynchronität wird die Gesamtblitzzeit mehr oder weniger verlängert und aus zwei (oder mehr) kurzen Einzelblitzen wird ein Gesamtblitz mit merklich längerer Blitzdauer (Bild rechts). 
Das ist besonders unschön, weil es rein visuell nicht auffällt. Erst das Oszilloskop zeigt, daß der resultierende Blitz kaum noch etwas mit den kurzen Einzelblitzen zu tun hat. 
Manchmal tritt dieser Effekt sogar mit sich ständig ändernden Verzögerungen auf.
Frei von derartigen Effekten sind von allen getesteten älteren Geräten nur die Metz 40MZ und die Nikon SB-800. Diese beiden Typen können problemlos miteinander kombiniert werden, sie zünden absolut synchron.

Nikon SB-25 Verzögerung Trotz Synchronkabel Verdoppelung der Einzelblitzzeit auf 50us

Wie sieht es bei neueren Blitzgeräten aus?

Die Weiterentwicklung ist nicht stehengeblieben. Sie wirkt sich auf die Größe, das Gewicht und die Leistung aus. Auch auf die Synchronität, und zwar negativ.

Nissin ‒ ein Totalausfall

Eines dieser modernen Geräte, das mit einer hohen LZ=40 bei kleinen Abmessungen hervorsticht, ist das Nissin i40. Mit ca. 310g (incl. Akkus) ist es 200g leichter als das Metz 40MZ und wäre für eine tragbare Anlage eine echte Alternative.
Zum Testen wurden bei Ebay zwei i40 (für Canon und Nikon) erstanden. Die verschiNissin i40edenen Betriebsmodi lassen sich ganz ohne Menus einfach per Wählrad auf der Rückseite einstellen. Zum Messen der kürzesten Blitzzeit wurde 1/256 im manuellen Modus ausgewählt. Das Ergebnis war verblüffend. Während der Hersteller 1/20000s angibt, lag die reale Blitzzeit bei t50=17µs oder 1/58000s. Für die Highspeed-Fotografie ein sehr guter Wert. Danach sollte das Gerät zeigen, wie sich die etwas kleinere Lichtleistung im Vergleich mit dem 40MZ-3i auswirkt.
Nachdem das i40 (für Canon) am Synchronkontakt mit dem Metz verbunden war, wurden beide Geräte gleichzeitig mittels Lichtschranke ausgelöst. Schon mit dem bloßen Auge war eine seltsame Doppelkontur zu sehen, die sich im Foto als ausgewachsene Doppelbelichtung herausstellte (Bild 1). Aber erst das Speicheroszilloskop zeigte die Ursache: Das i40 löste fast 1,7ms (!) später aus als das Metz 40MZ-3i (Bild 2). Auch das i40 für Nikon zeigte dieses eigenartige Verhalten, wenn auch die Verzögerung nur halb so lang war (Bild 3). Von Zufall kann bei zwei Geräten nicht mehr die Rede sein. Eine Anfrage beim technischen Kundenservice von Nissin ergab, daß es sich bei dem Verbindungskabel um ein Fremdteil handelt... Ah ja, genau, das war's
Ein entsprechendes Kabel von Nissin gibt es übrigens gar nicht.
Die Messungen wurden nach ca. einem Jahr mit einem leicht veränderten Aufbau noch einmal verifiziert. Die Ergebnisse unterschieden sich wie erwartet nicht wesentlich.

double exposure due to Nissin i40 delay Bild 1: 40MZ-3i und i40 mittels Stäbchen und Lichtschranke synchron ausgelöst. Deutlich sichtbare Doppelbelichtung.
undesired delay Nissin i40 for Canon Bild 2: Extreme Verzögerung bei i40 (Canon)
undesired delay Nissin i40 for Nikon Bild 3: Nicht viel besser bei i40 (Nikon)

Gar nicht mehr ins Gewicht fiel deshalb das zweite Ausschlußkriterium des i40, nämlich die nicht abschaltbare Stromsparautomatik. Pünktlich nach zwei Minuten legt sich das Gerät schlafen und kann nur noch durch Druck auf den Kameraauslöser oder eine Taste am Blitzgerät aufgeweckt werden (ein Verhalten, das auch den stärkeren Typ i60A betrifft). Damit sind diese Geräte für alle Anwendungen »off the cam« nur bedingt geeignet. Immerhin gelobte der Nissin-Service, dieses Problem an die Entwicklungsabteilung weiterzuleiten und beim nächsten Gerät entsprechend zu berücksichtigen. Seitdem sind einige Jahre vergangen und das neue i600 ist längst erschienen. Und genau ‒ die Stromsparfunktion ist weiterhin nicht abschaltbar.
Damit haben sich Nissin und das i40 für die Highspeed-Fotografie komplett disqualifiziert.

Godox als Ausweg?

Die Suche nach einem ähnlich kleinen und leichten Gerät, das die Nachteile des i40 nicht besitzt, erwies sich als schwierig. Bleibt der renommierte Hersteller Godox. Der Typ TT350 ist mit LZ36 nur wenig schwächer, bezüglich Größe aber vergleichbar. Und er braucht nur zwei Akkus, was ihn noch einmal 50g leichter macht. Auch der Energiesparmodus läßt sich per Menu abschalten, insgesamt also beste Voraussetzungen. Dazu kommt die eingebaute Master/Slave-Funksteuerung im 2,4GHz-Band, die weit über eine simple Fernauslösung hinausgeht. Trotz dieser üppigen Ausstattung lag der Preis nur bei der Hälfte des i40, so daß zwei Neugeräte (für Nikon) und eines über Ebay (für Fujifilm) geordert wurden.
Die Geräte machten nicht nur einen hochwertigen Eindruck, das Gehäuse ließ sich auch ‒ anders als die i40 ‒ wirklich flach aufklappen. Die größte Überraschung war aber die Blitzdauer: Alle drei Geräte lagen in der niedrigsten manuellen Stufe 1/128 bei ca. 14us, also t50≈1/70000s (Bild 4). Neuer Rekord, vergleichbar mit dem Hochgeschwindigkeitsblitz Hensel SpeedMax, nur nicht so stark.
Doch dann die Enttäuschung. Trotz synchroner Kabelauslösung zündet der TT350 erst 58µs nach dem 40MZ-3i (Bild 5). Auch mit zwei oder drei TT350 allein ist ein einziger Lichtimpuls die Ausnahme, meist erscheinen mehrere Peaks, die bis zu 160µs (oder noch mehr) auseinanderliegen können (Bild 6). Es ist kein System zu erkennen, jeder Versuch führt zu anderen Ergebnissen.
Die Auslösung über ein Kabel, die absolut synchron erfolgt, wird hier ad absurdum geführt.
Ein völlig unverständliches Verhalten. Offensichtlich besitzen moderne Geräte ein Eigenleben, das ältere noch nicht hatten.
Also wurde das Verbindungskabel entfernt und ein TT350 als Master konfiguriert, die anderen beiden als Slave. Änderungen, die am Master vorgenommen wurden, erschienen von nun an wie von Geisterhand auch auf den Slaves.
Neuer Test, Ergebnis wie vorher. Auch mit Funk keine synchrone Zündung möglich, die Werte schwankten von Versuch zu Versuch. Wobei eine gewisse konstante Zeitdifferenz zwischen Master und Slaves durchaus normal gewesen wäre. Blieb noch ein letzter Ausweg – alle Geräte als Slaves konfigurieren und einen externen »wire­less flash trigger« als Master nutzen. Aus der Vielzahl dieser Remote Controller wurde der X1T ausgewählt und gleich noch ein V850II dazubestellt, mit LZ60 eine echte Lichtkanone. Das Gerät kommt ohne alle Automatikfunktionen aus, wobei die gemessene Blitzdauer im manuellen Modus und 1/128 bei ca. 15us oder 1/66000s lag.
Leider auch in dieser Konfiguration keine Verbesserung. Trotz gemeinsamer Auslösung im Slave-Modus keine Synchronität der Lichtimpulse. So wird aus vier extrem kurzen Einzelimpulsen ein langer Blitz von 1/13500s (Bild 7).
Damit sind auch diese auf den ersten Blick vielversprechenden Geräte für die Highspeed-Fotografie ungeeignet. 
Anders sieht es natürlich in der »normalen« Fotografie aus, wo es nicht auf extrem kurze Blitze ankommt. Hier sind die Godox-Geräte, bei denen die Master/Slave-Einheit quasi kostenlos mitgeliefert wird, erste Wahl. Eine Anfrage an Godox blieb vermutlich aus genau diesem Grund ohne Antwort ‒ es betrifft nur eine verschwindende Minderheit.
Die Quintessenz aus diesen aufwendigen und auch nicht ganz billigen Tests ist, daß die bewährten Metz 40MZ vorerst weiterhin die Standardblitze bleiben. Mit dem Nikon SB-800 als Ergänzung.

flash duration Godox TT350 Bild 4: ein TT350N, 1/70000s
delay of a Godox TT350 compared to Metz  40MZ-3i while fired synchronously Bild 5: 40MZ-3i und TT350, synchrone Auslösung per Kabel
dysfunction of two Godox flash units TT350 Bild 6: zwei TT350N, synchrone Auslösung per Kabel: 1/37000s
dysfunction of 3x Godox flash units TT350 and 1x V850II (all as slaves) and a remote controller X1T as master Bild 7: vier Godox-Blitze als Slave, X1T als Master, 1/13500s

Metz M400

Das M400 ist eines der letzten Blitzgeräte, wenn nicht gar das letzte überhaupt, das unter dem Namen Metz verkauft wurde. In Größe, Leistung und Gewicht ist es etwa mit dem Nissin i40 vergleichbar und benötigt genau wie dieses vier Akkus/Batterien der Größe AA/Mignon. Die Power-save-Funktion läßt sich abschalten und die Blitzdauer in der geringsten Leistungsstufe ist mit ca. 1/50000s extrem kurz. Einer seiner größten Nachteile ist das Fehlen eines manuellen Auslöseknopfes, d.h., man kann den Blitz nur über eine Hilfskonstruktion per Schalter am Mittenkontakt auslösen.
Trotzdem wäre es ein echter Ersatz gewesen, wenn ... ja wenn es nicht dieselbe »Unart« wie Godox bzw. Nissin zeigen würde. Auch das M400 zündet (trotz Kabel!) mit einer merklichen Verzögerung von 42us im Vergleich zum Metz 40MZ-3i. Allerdings ist diese Zeit konstant und schwankt nicht wie bei Godox. Trotzdem ist sie unschön, weil sie die Gesamt-Blitzdauer verlängert und aus einem Blitz praktisch zwei macht.
Leider ist nach dem Aus von Metz kein Ansprechpartner mehr greifbar, der über dieses mehr als seltsame Verhalten Auskunft geben könnte.


42us delay in spite of a sync cable Das M400 zündet erst 42,6µs nach dem 40MZ-3i

Wenn man denkt es geht nicht mehr, kommt von irgendwo ein Lichtlein her...

Vom chinesischen Fotozubehör-Hersteller Meike gab es das Blitzgerät MK300, das mit einer Leitzahl von 32 recht vielversprechend aussah. Es war klein und leicht, ließ sich aber weder vertikal neigen noch horizontal drehen. Auch der Energiesparmodus war nicht abschaltbar.
Seit einiger Zeit ist jedoch der Nachfolger MK320 im Angebot, der einige Verbesserungen aufweist. Wie sein Vorgänger kommt er mit zwei AA-Batterien aus und ist deshalb genauso klein und leicht. Allerdings läßt er sich vertikal und horizontal schwenken, was die Ausrichtung erleichtert. Angeboten wird er unter verschiedenen Handelsnamen für die gängigsten Kamerasysteme, und hier beginnt das Verwirrspiel:
In der Version Meike für Fuji und Neewer für Canon erreichte er die extrem kurze Blitzdauer von 16µs, allerdings ohne abschaltbaren Energiesparmodus. Die Ausführung Dörr für Nikon enthält eine zusätzliche 2,4GHz-Master/Slave-Fernsteuerung und der Energiesparmodus ließ sich abschalten. Der Nachteil ist, daß die Blitzdauer bei 30µs liegt, also fast doppelt so lang. Außerdem ist der Blitz merklich teurer. 

Nur in der Geschmacksrichtung Meike/Neewer für Lumix wurde die ausgezeichnete Blitzdauer von 20µs mit dem abschaltbaren Energiesparmodus kombiniert.

Das klingt schon mal gut. Noch besser ist aber, daß zwei Blitzgeräte synchron und ohne Verzögerung blitzen. Die resultierende Blitzdauer liegt bei t50≈19,8µs (1/50500s), ein sehr guter Wert. Die etwas geringere Lichtleistung erfordert die Zugabe einer halben Blende, also 8/11.

MK320, sehr gut für die Highspeed-Fotografie geeignet MK320 – ein guter Ersatz für schwere Blitzgeräte
MK320 very short flash duration Zwei Blitzgeräte, aber ein extrem kurzer Blitz von 19,8µs (bei Teilleistungsstufe 1/128)

Mit einem Gewicht von 200g incl. zwei Batterien ist das MK320 weniger als halb so schwer wie ein Metz 40MZ und damit die ideale Wahl für eine tragbare Lichtschranke. 

China kann noch mehr

Seit September 2022 wird von der Firma Jinbei das Blitzgerät HD-2 Max in der Bauart der üblichen »Systemblitze« angeboten. Anders als der äußerlich ähnliche Vorgänger HD-2 Pro besitzt es den sog. Freeze-Modus, der bisher den größeren Studio-Blitzgeräten der Firma vorbehalten war. Dieser Modus erlaubt eine kürzeste Blitzzeit von 1/50000s, was das Blitzgerät interessant für die Highspeed-Fotografie macht. Da das Gerät auch von der deutschen Firma Rollei unter der Bezeichnung HS Freeze 1s angeboten wird, habe ich dort zwei Exemplare bestellt, um ihre Fähigkeiten auf diesem Gebiet zu testen. Ganz speziell im Vergleich zum bisherigen Maßstab, dem schon arg betagten Metz 40MZ-3i.

Beim ersten Betrachten fällt das imposante Erscheinungsbild ins Auge. Aber trotz seiner Größe bringt das Gerät mit 600g nur 100g mehr auf die Waage als der Metz. Dabei ist die »Basis«, also der untere Teil mit Akku, nicht wesentlich größer als bei anderen Systemblitzgeräten. Der große runde Reflektor deutet allerdings darauf hin, daß man es hier nicht mit einem Schwächling zu tun hat. Das unterstreicht auch die Blitzenergie von 80Ws, wobei Wattsekunden als Maßeinheit für die Blitzenergie üblicherweise nur bei Studioblitzgeräten verwendet wird. Die Leitzahl wird trotzdem angegeben, sie liegt bei 60. Das ist wirklich nicht wenig, es wird aber nicht spezifiziert, bei welcher Reflektorposition sie gilt. 
Aber wie sieht es mit der Blitzdauer und ganz besonders mit der Synchronität aus? Um das zu überprüfen, wurde bei beiden Geräten der

Freeze-Modus

aktiviert. Dazu dient auf dem großen rückseitigen Touch-Screen das Fenster »Setting«, über das sich verschiedene Parameter einstellen lassen. Mittels Pfeil nach unten erreicht man die Angabe FRE OFF, die sich durch Antippen in ON ändern läßt. Alle anderen Werte können erst einmal so stehenbleiben. Mit der Home-Taste geht man zurück und wählt das Feld »Speedlite«. Hier gibt es die beiden Betriebsarten TTL und M, die mittels MODE ausgewählt werden können. M ist richtig, weil es sich beim Freeze-Mode um einen manuellen Betriebsmodus ohne jede Automatik handelt. Ein kleines Feld FRE signalisiert, daß der Freeze-Mode aktiviert ist. Zum Abschluß wird die gewünschte Blitzzeit gewählt, indem der zentrale Zahlenwert in ganzen oder Zehntelschritten zwischen 1.0 (kürzeste Blitzzeit) und 9.0 (längste Blitzzeit) eingestellt wird. Hier interessierte natürlich die kürzeste Blitzzeit bei 1.0.

Nach dem manuellen Auslösen ist das Ergebnis auf dem Oszilloskop sichtbar. Die Blitzzeit liegt bei t50≈1/64000s, mit ihren extrem steilen Flanken erinnerte die Kurve fast schon an einen Hochspannungsblitz. Damit erreicht das Gerät eine kürzere Blitzzeit, als im Manual angegeben wird. Nun kam die entscheidende Messung, nämlich die Synchronität der Blitzgeräte. Dazu wurden beide Geräte am Synchronkontakt verbunden und über einen Taster gleichzeitig ausgelöst. Das Ergebnis war genauso beeindruckend ‒ die beiden Kurven lagen deckungsgleich übereinander, keinerlei Abweichung erkennbar.
Zum Abschluß mußte ein Gerät gegen den 40MZ-3i antreten, die Zündung erfolgte wiederum für beide gleichzeitig per Taster. Diesmal war das Ergebnis ungewöhnlich, denn anders als bei allen vorangegangenen Vergleichstests, bei denen der Metz stets als erster aufleuchtete, kam er diesmal weit nach dem Rollei. Während dieser sein Maximum bereits nach 12µs erreicht hatte, benötigte der Metz 40µs (genaugenommen war der Rollei-Blitz zu diesem Zeitpunkt schon wieder aus). Aus der Überlagerung beider Kurven ergab sich ein resultierender Blitz mit t50≈28µs oder 1/36000s, länger als jeder Blitz einzeln. 
Deshalb sollte der HS Freeze 1s tunlichst nur mit seinesgleichen kombiniert werden, jeder andere Blitz »ruiniert« dessen extrem kurze Blitzdauer.

Damit war der bisherige Spitzenreiter Metz 40MZ-3i in jedem Parameter entthront. Zumindest für den Highspeed-Bereich heißt der neue Champion Rollei HS Freeze 1S alias Jinbei HD-2 Max.

Rollei HS Freeze 1S auf einer Nikon D610 Das HS Freeze 1s auf einer Nikon D610
Rollei HS Freeze 1S, touch screen Der Touch-Screen
Rollei HS Freeze 1S, touch screen freeze-mode Freeze-Modus aktiv

Mit abgeschaltetem Freeze-Mode gibt das Gerät bei #1.0 eine Art Licht-Bursts mit 1/19500s ab, wie es auch schon das Vorgängermodell getan hat. 

Praxistest am Flugtunnel

Am Flugtunnel wurden bisher zwei Metz 40MZ-3i und zwei Nikon SB-800 bzw. vier Metz eingesetzt, die mit ihrer resultierenden Blitzzeit von ca. 1/38000s bzw. 1/50000s gut für Blende 11 waren. Diese vier Geräte wurden durch die beiden HS Freeze 1S mit ihrer kürzesten Blitzdauer von ca. 1/62000s ersetzt, beide in Reflektorstellung #5, also in Stellung Tele. In der Belichtung zeigten sich keine wesentlichen Unterschiede, wobei das Licht der Rollei-Geräte durch die großen runden Fresnellscheiben weicher erscheint.


Anfangs störte allerdings hin und wieder ein seltsamer Effekt: Obwohl die Lichtschranke ausgelöst wurde, leuchteten die Blitze nicht auf. Was zuerst wie eine Fehlfunktion aussah, stellte sich schließlich als Folge des »Power-Managements« der Blitzgeräte heraus. Defaultmäßig steht die Abschaltzeit auf 1,5min., und die wird sehr schnell überschritten. Nachdem sie auf 20min. umgestellt war, schalteten sich die Blitze (vorerst) nicht mehr ab. Leider fehlt im Menu die vollständige Abschaltung, was den Einsatz des Gerätes über längere Zeit erschwert oder unmöglich macht. 

Der Kundenservice von Rollei, angesprochen auf diese seltsame Limitierung, erklärte es mit einem fast schon lustigen Hinweis auf eine EU-Energiesparrichtlinie. Mit dieser wird dem Hersteller vorgeschrieben, daß sich das Gerät nach 20min. zum Zwecke des Energiesparens abzuschalten habe. Hier wird der Benutzer wie ein Kind bevormundet. Demnächst kommen die Energiesparlampen, die sich nach 20min. ausschalten und bei neuen Autos wird der Motor nach 20min. abgestellt. 

Dieser EU-Bug konnte mit einer kleinen Software-Änderung der PQS-Elektronik gefixt werden, indem alle 19min. ein Dummyblitz ausgelöst und das Gerät damit vor dem Einschlafen bewahrt wird. Alternativ sollte der Blitz alle 19min. in Brüssel einschlagen.

Ergänzung: Ab der Firmware-Version 1.4 kann der Sleep-Modus vollständig abgeschaltet werden. 

Die anderen Betriebsarten

Weniger wichtig in der Highspeed-Fotografie, umso mehr dafür in allen »normalen« Anwendungen ist natürlich der TTL-Modus. Dieser läßt sich im Menu unter »Speedlite« auswählen, indem das Feld Mode angetippt wird, bis sich die Betriebsart in TTL ändert. Außerdem muß natürlich die richtige Kamera eingestellt sein, dies geschieht durch Antippen der Marke und den Pfeilen zum Ändern. 
An dieser Stelle tritt auch der bemerkenswerte Blitzfuß in Aktion, an dem sich acht Kontakte befinden. Damit kann das Gerät an Kameras der Marken Canon, Nikon, Fuji, Olympus und Lumix direkt angesetzt werden. Für Sony wird wegen des nicht-normgerechten Blitzschuhs ein Adapter benötigt. 
Auf einer Nikon D610 zeigte der Blitz im TTL-Modus seine beeindruckende Stärke. Wenn der Reflektor auf A0 gesetzt ist, folgt er automatisch der am Objektiv eingestellten Brennweite. Das Ganze funktioniert sogar mit dem TTL-Verlängerungskabel SC-17. Damit ist TTL auch "off-the-Cam" möglich.
Mit den drei Dreiecken kann die Synchronisation auf den ersten bzw. zweiten Verschlußvorhang oder HSS (High Speed Sync) ausgewählt werden. Normalerweise ist die Synchronzeit die kürzeste Belichtungszeit, bei der das Bildfenster voll geöffnet und das Blitzen möglich ist. Sie liegt je nach Kamera bei ca. 1/160s-1/250s. Bei kürzeren Zeiten würde nur ein mehr oder weniger breiter Streifen belichtet. Der HSS-Modus »überlistet« diese Einschränkung des Schlitzverschlusses, indem mehrere kurze Blitze ausgegeben werden, während der Schlitzverschluß abläuft. Auf dem Oszi sieht man vier Blitze, die innerhalb dieser Ablaufzeit (die der Synchronzeit entspricht) gezündet werden. Der HSS-Modus hat also nichts mit einem Highspeed-Blitz zu tun, er erlaubt nur sehr kurze Belichtungszeiten. Das alles funktioniert natürlich nur, wenn die Kamera diese Einstellungen unterstützt. 

Kamera-Marken, die man gar nicht benutzt, sollten unter »Setting« ausgeschaltet werden, damit sie gar nicht erst fälschlicherweise ausgewählt werden können.

Für den Master/Slave-Modus sind die beiden oberen Felder im Touch-Screen zuständig. Für den Master muß die richtige Kamera-Marke eingestellt werden, z.B. Nikon. Beim Slave funktionierte hier nur TTL-ALL. Die Einstellungen, die im Master unter Gruppe A eingegeben werden, erscheinen daraufhin auch auf dem Slave. Wird z.B. auf dem Master M ausgewählt, erscheint dieser Modus auch auf dem Slave. Auch die im zweiten Feld eingegebene Blitzdauer, z.B. 1.0, wird vom Slave übernommen. Ähnlich ist es im Modus TTL. Allerdings wird eine auf dem Master eingegebene Korrektur im zweiten Feld nicht vom Slave übernommen. 
Wurde vorher der Freeze-Modus aktiviert, blitzen Master und Slave in dieser Betriebsart. Ohne Freeze-Modus werden die Licht-Bursts ausgegeben. Dabei fällt die extrem kurze Verzögerungszeit zwischen dem Master- und Slaveblitz auf. Das dritte Feld aktiviert die Einstell-LED. Über den Master kann das LED-Licht auf beiden Geräten ein- und ausgeschaltet werden.

Akku und Stromversorgung

Die Blitzgeräte besitzen keine herkömmlichen NiMH-Akkus mehr, sondern einen modernen Li-Akku. Mitgeliefert wird eine Ladeschale, ein USB-Steckernetzteil und ein USB-Adapterkabel A-nach-C. Dieses ist erforderlich, um das Netzteil mit USB-A-Ausgang an die Ladeschale mit dem modernen USB-C-Eingang anschließen zu können. Lt. Aufdruck liefert das Netzteil 5V/9V/12V, genutzt wird aber nur 5V. An die Ladeschale läßt sich auch ein USB-C-Netzadapter mit Power Delivery (PD) anschließen, wobei auch hier nur die 5V-Schiene benutzt wird. Das ist nicht konsequent, denn mit höherer Spannung könnte die Ladezeit des Akkus verringert werden (das vollständige Laden dauert knapp 2 Stunden).
Genauso inkonsequent ist die Stromversorgung des Blitzgerätes selbst. Unter diesem Punkt wird zwar im Manual auf den Netzadapter verwiesen, wer aber glaubt, damit das Blitzgerät über dessen USB-C-Buchse betreiben zu können, irrt. Weder ohne noch mit angesetztem Akku funktioniert es. Noch nicht einmal der Akku kann so aufgeladen werden. Mit anderen Worten, das Blitzgerät kann nicht extern mit Strom versorgt werden und ist auf den Akku angewiesen. Für ein semi-professionelles Blitzgerät eine erhebliche Einschränkung, zumal ein USB-C-Anschluß vorhanden ist. Leider wird dessen Hauptvorteil, nämlich die Stromversorgung per PD, verschenkt. Wer das Gerät sehr lange betreiben will, ist also auf den Kauf eines Zweitakkus angewiesen.

Firmware-Update

Hier muß beachtet werden, daß das Gerät nicht eingeschaltet werden darf, wenn es am PC angeschlossen ist. Ansonsten wie im Manual beschrieben. 

Fazit

Der HD-2 Max alias HD Freeze 2s ersetzt die »alten« Metz 40MZ und Nikon SB-800 vollständig. Sein Blitz im Freeze-Mode ist extrem kurz und zwei Geräte blitzen absolut synchron, eine Voraussetzung für den Einsatz im Bereich der Highspeed-Fotografie. Als »tragbares Studioblitzgerät« besitzt er eine ausreichend hohe Blitzleistung und wegen der großen Fresnell-Scheibe ist sein Licht angenehm weich. Das Einstellicht per COB-LED ist sehr hell und ersetzt die Taschenlampe. Auch die Einstellung auf dem großen Touch-Display ist intuitiv und i.a. einfacher als mit vielen Tasten.

Wo viel Licht ist, ist aber auch etwas Schatten. Das Manual muß man sich erst von der Website als PDF herunterladen. Auch könnte es ausführlicher sein. Was heißt z.B. NOR im Slave Modus?
Etwas verwirrend wird es im Master/Slave-Modus. Im Manual wird darauf hingewiesen, daß der Slave-Modus nur mit einem separaten drahtlosen Fernauslöser von Rollei funktioniert. In der Praxis funktioniert er aber augenscheinlich auch ohne Rollei-Fernauslöser, Hauptsache die zwei Blitzgeräte sind korrekt als Master bzw. Slave konfiguriert. Insgesamt ist bei manchen Passagen Probieren angesagt.
Die mechanische Qualität macht einen guten Eindruck, beim vertikalen Neigen des Reflektors sind präzise Rastpunkte deutlich zu erkennen. Ganz anders beim horizontalen Schwenken, das einen wenig präzisen »Plastikeindruck« hinterläßt.
Der recht große Akku ist doch ziemlich schnell erschöpft, selbst wenn nur mit sehr energiearmen Kurzzeitblitzen gearbeitet wird. Dabei ändert sich das Akkusymbol in Rot, also fast leer. Wird der Akku auf die Ladeschale gelegt, beginnt die Ladung in der zweiten Stufe, die Hälfte der Akkukapazität ist also noch vorhanden. Hier sollte die Anzeige mit dem wahren Entladezustand besser in Übereinstimmung gebracht werden. Auch die Verriegelung des Akkus im Gehäuse war nicht immer ganz präzise und erforderte größeren Kraftaufwand.
Was fehlt, ist eine externe Stromversorgung für den stationären Betrieb, bei längerem Betrieb ist zwingend ein Austausch-Akku erforderlich. Die im Blitzgerät eingebaute USB-C-Buchse kann leider nicht zur Stromversorgung herangezogen werden, sie dient nur zum Aufspielen einer neuen Firmware. Mit der beigelegten Ladeschale wird mit 15W geladen, konkret mit 5V/3A. Um die Strombelastung des Kabels zu verringern, wäre eine höhere Ladespannung besser, z.B 9V oder 12V. Trotz USB-C-Buchse ist der moderne Standard Power Delivery (PD) offenbar nicht implementiert. Damit werden sowohl im Blitzgerät selbst als auch in der Ladeschale die Möglichkeiten des USB-C-Standards nicht genutzt. Außerdem fehlt die Möglichkeit, ein Synchronkabel anzuschließen. Manuell kann das Gerät ausschließlich am Blitzfuß ausgelöst werden.

Das Manko des nicht-abschaltbaren Stromsparmodus ist seit Firmware-Version 1.4 behoben. Außer den Abschaltzeiten 10min. und 20min kann auch off gewählt werden. 

Hier ein Test von digitalkamera.de

Kopplung von Blitzgeräten per Funk

Wie oben gezeigt, sind die optischen IR-Slaveauslöser in der Highspeed-Fotografie wegen ihrer unterschiedlich langen Verzögerungszeit nur bedingt geeignet. Außerdem funktionieren sie nur bei direktem Sichtkontakt; im Freien und bei größeren Entfernungen läßt die Zündwilligkeit oft zu wünschen übrig. Um diese Nachteile zu vermeiden, geht die Entwicklung hin zur Auslösung auf funktechnischer Basis. Sie funktioniert unabhängig von äußerer Helligkeit und bis zu Entfernungen von einigen zehn Metern. Ist damit das Problem gelöst?

Neewer RT-16 ungeeignet

Zum Testen wurde der Typ Neewer RT-16 ausgewählt, der bei Amazon mit einem Sender und drei Empfängern im modernen 2,4GHz-Band angeboten wird. Alle vier Einheiten besitzen einen DIP-Switch, mit dem einer von 16 Kanälen ausgewählt wird. Hier wurde die Werkseinstellung (Kan.16) beibehalten. Der Sender kann entweder auf den Blitzschuh der Kamera gesteckt oder per Taste/Klinkenbuchse ausgelöst werden. Nachdem jeder Empfänger mit einem Blitzgerät (40MZ-3i) verbunden war, wurde zuerst eine eventuelle Verzögerung innerhalb der drei Empfänger selbst gemessen. Erfreulicherweise war sie gleich Null, d.h. alle drei Blitze lösten synchron aus. Danach wurde ein viertes Blitzgerät 40MZ-3i hinzugefügt, das mittels Kabel parallel zum Sender ausgelöst wurde. Das Ergebnis war ernüchternd, die drei Blitzgeräte an den Fernsteuer-Empfängern leuchteten erst 1,1ms (!) nach dem direkt ausgelösten Metz auf. Eine Ursache für diese Verzögerung könnte sein (muß aber nicht), daß die Funkverbindung nicht im schnellen 2,4GHz-Band (wie von Amazon beworben), sondern tatsächlich im 433MHz-Band erfolgt. Was leider erst nach dem Kauf bei einem Blick in die beiliegende Gebrauchsanweisung auffällt. Die Blitze zünden zwar sicher über eine Entfernung >30m, mit dieser Auslöseverzögerung ist das RT-16 aber ‒ zumindest für die Highspeed-Fotografie ‒ nicht geeignet.

Neewer RT-16 433Mhz statt 2.4GHz Kein 2,4GHz-Band, nur 433MHz
Neewer RT-16 extreme Verzögerung Über 1ms Verzögerung der Blitze durch das RT-16

Bilora FB-1

Hier zeigt sich ein etwas merkwürdiges Verhalten. Wird der Sender manuell über die Taste gezündet, ergibt sich eine Verzögerungszeit zwischen dem direkt und dem über die Funkstrecke ausgelösten Blitz von ca. 1ms. Wird der Sender jedoch über den Mittenkontakt am Blitzfuß ausgelöst (ergo die Normal-Methode), steigt die Verzögerungszeit auf 3,8ms (Nikon-Version) bzw. 2,67ms (Canon-Version). Für »normale« Fotos mag das gerade noch angehen, für die Zusammenarbeit mit dem schnellen PQS-Verschluß ist diese Funkfernsteuerung jedoch ungeeignet. Der Verschluß ist schon längst wieder geschlossen, wenn der Blitz endlich aufleuchtet. 

Bilora FB-1 für Nikon und Canon Sender und Empfänger plus Fernsteuerkabel.
FB1 Funkfernsteuerung zu langsam für PQS-Verschluss Die Funkfernsteuerung ist zu langsam für den PQS-Verschluß

Kaiser MultiTrig

Der Typ Kaiser MultiTrig AS5.1 war die schnellste käufliche Funkstrecke, die getestet wurde. Als eine der wenigen glänzte sie mit der Angabe der Verzögerungszeit von 400µs, die allerdings real mit 560µs gemessen wurde.
An einem Sender können mehrere Empfänger betrieben werden, die auf denselben oder verschiedene Funkkanäle gelegt werden können. Insgesamt ein sehr guter und recht schneller Fernauslöser.

Fazit: Funkauslöser funktionieren auch im Freien, die Verzögerung kann aber je nach Typ bis in den Millisekunden-Bereich betragen. Das Maximum an Übertragungsgeschwindigkeit wurde erst mit dem Eigenbau einer Funkfernsteuerung erreicht, wobei die kürzeste Verzögerung bei etwa 200..250µs liegt. Das ist zwar schnell, aber immer noch wesentlich langsamer als mit einem optischen Slaveauslöser.
Für sehr schnelle Objekte kommt nur die Kabelauslösung infrage, und (sofern getestet) nur mit den Blitzgeräten Metz 40MZ und Nikon SB-800. Bei diesen ist die Auslöseverzögerung quasi Null, auch zwischen den Blitzgeräten. Mit anderen Blitzgeräten kann das nicht garantiert werden, hier sind die verschiedensten Effekte zu erwarten (s. oben).
Hinweis: Das Jinbei HD-2 Max alias Rollei HS Freeze 1s ergänzt die beiden o.g. Geräte.

Hintergrundgestaltung

Das »ewige« Problem der Blitzbeleuchtung ist der schwarze Hintergrund, hervorgerufen durch die Divergenz der Lichtstrahlen einer Punktlichtquelle. Erhöht sich die Entfernung zur Lichtquelle um das Doppelte, vergrößert sich die beleuchtete Fläche auf das Vierfache. Die Beleuchtungsstärke E sinkt also mit dem Quadrat der Entfernung. Bei doppelter Entfernung sind es schon zwei Blenden Lichtverlust, bei der 2,8fachen Entfernung drei. Nur bei parallelem Licht wie dem der Sonne ist die Beleuchtungsstärke entfernungsunabhängig (wobei das Sonnenlicht natürlich auch divergent ist, wegen der großen Entfernung der Sonne aber praktisch parallel erscheint).
Wie kann man nun den schwarzen Hintergrund abschwächen oder ganz verhindern? Durch stärkere Blitzgeräte nicht, weil sich damit nichts am quadratischen Lichtabfall ändert. Geeignet wäre ein Aufhellblitz, der näher am Hintergrund steht, oder ein sog. Hintergrundkarton, der die Entfernung begrenzt. Beide Methoden beschränken sich aber auf stationäre Aufbauten, bei der Fotografie »aus der Hand« ist das kaum möglich. Hier entscheidet der Zufall, wie fast immer in der Highspeed-Fotografie. Eine dritte Möglichkeit wäre, das Licht so weit wie möglich zu parallelisieren, z.B. mit geeigneten Reflektoren.
Insgesamt tritt der schwarze Hintergrund aber nur dann voll in Erscheinung, wenn tatsächlich in ein »schwarzes Loch« geblitzt wird. Das ist relativ selten der Fall, bei den meisten Fotos ist ein Hintergrund vorhanden und die »Schwärze« fällt weniger dramatisch aus.

Abstandsgesetz Oben: divergent, darunter: parallel

Reaktionsverstärker – die Lichtschranke

Während es mit etwas Übung kein großes Kunststück ist, den fast geradlinig dahinfliegenden Düsenjet in 100m Entfernung aufzunehmen, ist die Situation bei »quirligen« Objekten wie kleinen Vögeln oder gar Insekten ganz anders. Das übliche Nachziehen im Sucher versagt hier vollständig. Erschwerend kommt hinzu, daß sich das Ganze im Nah- bzw. Makrobereich abspielt, wo die Schärfentiefe nur noch wenige Zentimeter bis Millimeter groß ist. Wenn man sich nicht auf Zufallstreffer verlassen will, hilft nur der Einsatz einer Lichtschranke. Sie ist um Größenordnungen schneller als das menschliche Reaktionsvermögen und erkennt auch den kleinsten Flieger.
Lichtschranken unterscheiden sich in vielen Parametern, wobei sich die Einsatzgebiete der einzelnen Typen häufig überschneiden. Hier einige Unterscheidungsmerkmale:

 

    Vorteile   Nachteile 
  • Einweg-Lichtschranke
   Universell anwendbar, schnell, kleine bis große Distanzen, der Lichtstrahl läßt sich gut bündeln, für kleine Objekte geeignet    Zwei Kabel müssen verlegt werden, u.U. schwierig zu justieren
  • Reflex-Lichtschranke
Standard bei vielen Anwendungen, nur ein Kabel notwendig, speziell mit Laser schnell und hohe Distanz möglich spezieller Reflektor erforderlich 
  • Gabel-Lichtschranke
Kompakter Aufbau, muß nicht justiert werden, schnell, für sehr kleine Objekte geeignet begrenzte Distanz
  • Fiberoptische Systeme
Viele Sensorvarianten, für sehr kleine Objekte und beengtes Umfeld, extrem schnell, anreihbar empfindliche Lichtleiter, Einstellung anspruchsvoll
  • Lichttaster
Reflexlichtschranke, die das Objekt selbst als Reflektor benutzt, kein extra Reflektor nötig Ansprechgenauigkeit relativ schlecht (hängt vom Objekt ab), begrenzte Entfernung

 

Weitere Spezifikationen wären

  • Ausgangskonfiguration (PNP oder NPN)
  • Schaltmodus (hell- oder dunkelschaltend)
  • Lichtquelle (Laser oder LED)
  • Lichtfarbe (IR, rot, andere)

Nicht alle Lichtschranken sind in allen Modifikationen erhältlich, es findet sich aber so gut wie immer ein geeigneter Typ. Deshalb lohnt sich auch ein Selbstbau nicht mehr. Hier einige konkrete Beispiele:

 

 

Prinzip: 

Einweg

Reflex

Gabel

Lichtleiter

Lichttaster

Typ:

Panasonic EX-30

Sick WL12L-2B530

di-soric OGU-030

Panasonic FX-501P

Sick WT27L-2F430

Lichtquelle: 

LED

Laser

LED

LED

Laser

Latenzzeit: 

0,5ms

0,2ms

0,25ms

25µs/60µs/0,25ms/2ms

0,5ms

Ausgang:

je nach Typ PNP, NPN

am Stecker wählbar

je nach Typ PNP, NPN

PNP

PNP

Reichweite:

50cm

12m

bauartbedingt

Millimeter bis Meter

10-100cm

 

Für den Einsatz in der Fototechnik muß die Lichtschranke natürlich an die nachfolgende Schaltung angepaßt werden. Wer sich die Entwicklung einer speziellen Elektronik sparen will, kann auch zu fertigen Lösungen greifen. Hier wäre die deutsche Firma eltima electronic zu nennen, die mit den beiden Familien Joker2 und Jokie2 nahezu alle Einsatzgebiete abdeckt.
Das Lichtschrankensystem Joker2 kann bis zu drei Lichtschranken steuern, z.B. als Einfach- oder Kreuzlichtschranke und als Lichtgitter. Jokie2 ist eine universell einsetzbare Einzellichtschranke im Mini-Format. Mittlerweile werden die Lichtschranken durch viele Zusatzsysteme ergänzt.

Eine Alternative wäre die US-amerikanische Firma Cognisys Inc., die gemäß ihrem Motto »Capture the Hidden World« ein sehr großes Angebot für die ausgefallenen Bereiche der Fotografie besitzt. Darunter auch einen speziellen Verschluß für die Highspeed-Fotografie mit der recht kurzen Verzögerungszeit von 5,8ms sowie ein komplettes »Insect-Rig«.

Das leidige Verschluß-Problem

1988 wurde die Nikon F4 vorgestellt, damals die schnellste Profikamera auf dem Markt. Sie besaß eine Auslöseverzögerung von 43ms, das heißt, diese Zeit verging vom Druck auf den Auslöser (oder einem Signal am Fernauslösereingang) bis zur vollen Öffnung des Verschlusses. Ein Insekt, das mit der Geschwindigkeit von 1m/s durch die Lichtschranke fliegt, wäre also schon 4,3cm weitergeflogen und hätte das Bildfeld verlassen, bevor der Blitz aufleuchtet. 
Seitdem hat sich die Fototechnik revolutioniert, aber bezüglich der Auslöseverzögerung hat sich so gut wie nichts getan. Auch heute, 35 Jahre nach der F4, sind selbst bei modernsten DSLRs »Totzeiten« im Bereich von 30-50ms ganz normal. Warum sich die Kamera so viel Zeit läßt, gerade auch im manuellen Modus, in dem nichts berechnet wird, bleibt das Geheimnis der Kameraentwickler. Auf jeden Fall bedeutet eine derartige Verzögerung das »Aus« für den Einsatz bei vielen fliegenden Objekten, denn die schnellste Lichtschranke nützt nichts, wenn sie in der Langsamkeit der Kamera untergeht. 
In speziellen Situationen helfen zwei Methoden, mit dieser Verzögerung umzugehen. Das ist einmal die Offenblitztechnik, bei der der Verschluß vor der Aufnahme geöffnet wird und die Lichtschranke nur den Blitz auslöst. Das setzt aber völlige Dunkelheit voraus. Die andere Methode ist der Vorhalt, bei dem der Fokuspunkt um eine gewisse Distanz in Richtung der Bewegung verschoben wird. Das funktioniert bei einer relativ gleichförmigen Bewegung mit einer bekannten (und konstanten) Geschwindigkeit; bei den völlig unvorhersehbaren Flugbahnen von Insekten oder kleinen Vögeln ist der Vorhalt aber illusorisch. Hier muß die Latenzzeit von vornherein so gering wie möglich sein.

Weil ein Eingriff in die Elektronik der Kamera nicht möglich ist, bleibt als Ausweg nur, den langsamen Schlitzverschluß komplett stillzulegen und durch einen schnelleren zu ersetzen. Das ist in der Regel ein Zentralverschluß, der vor dem Objektiv oder zwischen Kamera und Objektiv angeordnet wird. Übliche Zentralverschlüsse kommen aber meist aus der Großformatfotografie und sind von Haus aus weder besonders schnell noch elektrisch auslösbar, sie müssen mit viel Aufwand erst an den beabsichtigten Zweck angepaßt werden. Dann sind Auslöseverzögerungen von weniger als 10ms erreichbar, also eine Verbesserung um den Faktor 5-10.

Ein echter Durchbruch in der Verschlußtechnik gelang aber bereits 1976 der deutschen Firma Rollei mit der Vorstellung der Rolleiflex SLX. Diese vollelektronische Mittelformat-Kamera war ihrer Zeit um ein Jahrzehnt voraus, wobei sich das größte Highlight im Objektiv versteckte – der Hochleistungs-Zentralverschluß. Sein Prinzip war denkbar einfach – eine Spule, die auf einem extrastarken Permanentmagneten verschiebbar angeordnet ist. Je nach Stromfluß bewegt sie sich in die eine oder andere Richtung und öffnet bzw. schließt dabei die Verschlußlamellen. Daher auch die Bezeichnung Linearantrieb.
Schon in der ersten Ausführung PQ (Professional Quality) erreichte der Verschluß eine kürzeste Belichtungszeit von 1/500s. Kaum weniger revolutionär war aber die extrem schnelle Ansprechzeit von 4ms bis zur vollen Öffnung. Etwa 15 Jahre später erschien eine weiterentwickelte Version, die PQS genannt wurde (Professional Quality Speed). Seine Verschlußlamellen bestanden aus hauchdünnen Karbonplättchen, die dank ihrer geringen Masse extrem beschleunigt werden konnten. Dafür sorgte der Linearantrieb, der über 100W »auf die Spule« brachte. Im Ergebnis halbierte sich die kürzeste Belichtungszeit auf 1/1000s und die Ansprechzeit auf 2ms. Damit war der PQS-Verschluß weltweit der schnellste Zentralverschluß, der in »normalen« Kameras eingesetzt wurde. Ein weiterer Vorteil neben der enormen Geschwindigkeit war die vollautomatische Arbeitsweise. Der Verschluß muß weder manuell gespannt noch ausgelöst werden, alles funktioniert elektrisch/elektronisch per µC.
Erstaunlicherweise war dieser HighTech-Verschluß kein besonderes Thema in der Rollei-Werbung, obwohl man sich gerade damit von allen anderen Herstellern abhob. Trotzdem gab es Fotografen, die das enorme Potential dieser Technik sehr frühzeitig erkannten und ausnutzten, z.B. Fritz Rauschenbach. Mit der Rolleiflex 6008, einer Lichtschranke und mehreren Kurzzeitblitzgeräten gelangen ihm Fotos von fliegenden Insekten und springenden Fröschen, die sich in nichts von denen Stephen Daltons unterschieden. 

Mittlerweile ist der PQS-Verschluß nicht mehr der einzige elektrisch/elektronisch gesteuerte Zen­tralverschluß. Die US-amerikanische Firma Cognisys hat einen eigenen Verschluß entwickelt, der mit 5,5ms Ansprechzeit aber eher mit dem PQ-Verschluß zu vergleichen ist. Mit dem VS14 bietet die amerikanische Firma Uniblitz einen Verschluß an, der ebenfalls auf 1ms Offnungszeit kommt, aber nur 14mm freien Durchmesser besitzt.   

Vorhalt gegen den »shutter lag« Vorhalt gegen den »shutter lag«
Der PQS-Verschluss in Bewegung

Die bessere Lösung: Der schnell­ste Zentralverschluß, hier in »Zeitlupe«

Apo-Componon HM 4,5/90 am PQS-Verschluss PQS-Verschluß im Gehäuse mit einem Schneider Apo-Componon HM 4,5/90

Cognisys-Verschluß mit Ansteuer-Elektronik
                           Courtesy Cognisys Inc.          

Kreuzlichtschranke mit Nikon F4 1998 – die erste Ausführung der Kreuzlichtschranke. Hier noch  mit der Nikon F4 und zwei fiberoptischen Lichtschranken
Ansteuerung für Kreuzlichtschranke und für den PQS-Verschluss Die Elektronik für die Kreuzlichtschranke
tragbare Lichtschranke mit PQS-Verschluss Prinzip der tragbaren Anlage. Die Breite des Bildfeldes Y beträgt ca. 60mm für einen APS-C-Sensor
die tragbare Lichtschranke auf dem Stativ Hier mit der Sony A6000 und dem Apo-Rodagon N 4/80
Die Elektronik der tragbaren Lichtschranke Die Elektronik der tragbaren Lichtschranke
synchroner Blitz Die »normale« Methode - ein kurzer Blitz bei offenem Bildfeld
HSS-Blitz HSS-Synchronisation. Mehrere Blitze nacheinander, damit sehr lange »Gesamt-Blitzzeit«

Der PQS-Verschluß im Einsatz

Eine von Rollei angefertigte »Spezialversion« des Verschlusses (ohne die nicht benötigte Blendeneinheit) wurde in ein Alugehäuse eingebaut und an eine Nikon F4 adaptiert. Die war vor 20 Jahren noch Stand der Technik, außerdem besaß sie am Batterieteil einen Anschluß für die Fernauslösung – unbedingt notwendig, aber nicht bei allen Kameras zu finden.
Die Elektronik für die Ansteuerung des PQS-Verschlusses, die sich normalerweise im Gehäuse der Rolleiflex befand, mußte extra aufgebaut werden. Sie wurde für eine Kreuzlichtschranke ausgelegt, die nur dann auslöst, wenn das Fotoobjekt im Kreuzungspunkt beide Lichtschranken gleichzeitig unterbricht. Der Sinn dahinter war, den Filmverbrauch zu begrenzen. Zusätzlich konnten über einen Schalter 15 Programme ausgewählt werden, darunter der Stroboskop-Betrieb mit bis zu sechs angeschlossenen Blitzgeräten.

Als Blitzgeräte wurden zwei Metz 36CT3 im Winder-Modus eingesetzt, womit eine Blitzdauer von ca. 1/40000s erreicht wurde. Als Lichtschranken kamen anfangs zwei fiberoptische Systeme von Omron zum Einsatz, die sich aber als zu »sperrig« erwiesen und gegen zwei Einweglichtschranken EX-30 von SunX (heute Panasonic) ausgetauscht wurden. Wegen des relativ großen Abstands von der Kamera zum Kreuzungspunkt wurde ein Leitz Photar 5,6/120 vor den Verschluß gesetzt, womit sich ein ABM von ca. 0,4 ergab.

Das Ganze wurde auf einem stabilen Träger aus Aluprofilen befestigt und über einer erfolgversprechenden Blüte mit ausreichend hohem »Flugaufkommen« positioniert. Die Kamera wurde auf Modus Bulb eingestellt und ihr Schlitzverschluß über den Fernsteuereingang vom µC permanent geöffnet. Der Zentralverschluß war geschlossen und harrte der Dinge, die da kamen. Durchflog ein Objekt den Kreuzungspunkt der Lichtschranken, wurde der µC aktiv und öffnete den Zentralverschluß innerhalb von 2ms für eine tausendstel Sekunde. Ein Mikroschalter im Verschluß löste den Blitz im Moment der größten Öffnung aus. Danach wurde der Kameraverschluß geschlossen, um den Film weiterzutransportieren.
Diese stationäre Anlage funktionierte sehr gut und wurde einige Jahre lang benutzt. Allerdings war sie schwer, unflexibel und schwierig zu justieren. Und sie verbrauchte viel Film, vielleicht der negativste Punkt. Am Horizont zeichnete sich aber schon der große Umschwung in der Fotografie ab, die Digitalisierung. Als mit der D80 die erste erschwingliche Nikon-DSLR erschien, war es Zeit, umzusteigen. Sie paßte direkt an die Anlage, besaß aber wegen ihres DX-Sensors ein merklich kleineres Bildfeld als die F4.
Der elektronische Bildsensor besitzt aber nicht nur Vorteile. Während es ein Film quasi ewig im Dunkeln aushält, erwärmt sich ein aktivierter elektronischer Sensor allmählich. Die Folge sind Bildfehler wie Hotpixel, Farbverfälschungen und starkes Rauschen. Damit diese Fehler nicht überhandnehmen, muß der Sensor regelmäßig ausgelesen werden. Nach einer Änderung der Software führte der µC nun alle drei Minuten eine automatische »Dummyauslösung« der Kamera durch, sofern innerhalb dieser Zeitspanne keine reguläre Unterbrechung der Lichtschranken erfolgte.
Das wären zwar im ungünstigsten Fall 20 Bilder pro Stunde, aber die kosteten nichts mehr. Und deshalb konnte auch die Kreuzlichtschranke entfallen.

Veränderungen

Es war an der Zeit, über ein neues Konzept nachzudenken. Die Anlage sollte kleiner, leichter und vor allem transportabel sein. Und das alles möglichst ohne aufwendige Einstell- und Justierarbeiten.

Das Ergebnis war die links abgebildete Anlage. Um die Abmessungen zu reduzieren, mußte die Brennweite verringert werden. Wegen der Auszugsverlängerung des PQS-Verschlusses und des großen Nikon-Auflagemaßes waren die Spielräume aber begrenzt, 80mm Brennweite funktionierte gerade noch. Das Ganze erforderte auch eine neue Elektronik, die wegen des Verzichts auf die Kreuzlichtschranke, den Stroboskop-Modus und mehrerer Programme wesentlich kleiner ausfallen konnte.
Die Lichtschranke Panasonic EX-10 fand innerhalb der Alu-Träger Platz, die einmal auf die korrekte Entfernung justiert werden. Mit zwei Metz MZ40-3i im Modus 1/128 (ca. 1/30000s), die auf die festmontierten SCA300-Adapter aufgesteckt wurden, reichte das Licht für Blende 11. Als Energiequelle für den Verschluß und die Lichtschranke genügte ein 12V-Akkupack aus zehn NiMH-Zellen der Größe AA oder AAA.
Insgesamt machte sich nur ein Nachteil der Digitaltechnik wirklich bemerkbar: Der höhere Stromverbrauch der Kamera. Während die Nikon F4 mit geöffnetem Verschluß ca. 100mA verbrauchte, waren es bei der D80 schon 440mA. Ihr relativ kleiner Akku war deshalb bereits nach ca. 3 Std. erschöpft. Die neuere D7000, die statt eines CCD-Sensors mit einem CMOS-Sensor ausgerüstet ist, war wieder etwas sparsamer. Obwohl ihr Akku nur 25% mehr Kapazität besaß, hielt sie die doppelte Zeit durch.

Diese tragbare Anlage ist seit zehn Jahren in Betrieb und arbeitet bisher völlig fehlerfrei. Mit 3,5kg Gewicht kann sie auch über längere Zeit noch getragen werden, sie kann aber auch auf einem Stativ geparkt werden.
Mittlerweile wurde die D7000 gegen eine leichtere Sony A6000 ausgetauscht, womit sich das Gesamtgewicht auf 3,1kg reduzierte.

Die Blitzsynchronisation - Vorteil für den Zentralverschluß

Ein Schlitzverschluß besteht aus zwei Vorhängen, die sich meist von oben nach unten über das Bildfenster bewegen. Je kürzer die Belichtungszeit, desto schmaler der Schlitz. Die Belichtungszeit, bei der das gesamte Bildfenster noch freigegeben wird, nennt sich Synchronzeit. Nur bis zu dieser Belichtungszeit, normalerweise 1/250s, kann ein Blitz eingesetzt werden. Bei kürzeren Zeiten gibt der Schlitz nicht mehr das gesamte Bildfeld frei und ein einzelner Blitz würde nur noch einen Teil des Bildfeldes belichten.

Dagegen synchronisiert der Zentralverschluß den Blitz bis zur kürzesten Belichtungszeit, im Falle des PQS-Verschlusses also bis 1/1000s. Der große Vorteil ist, daß das Umgebungslicht um mindestens zwei Blendenstufen mehr unterdrückt wird als beim Schlitzverschluß. Geisterbilder und Unschärfen treten wesentlich später oder gar nicht in Erscheinung. 

Um den essentiellen Nachteil des Schlitzverschlusses – seine lange Synchronzeit – zu umgehen, wurde die sog. »Highspeed-Sychronisation« oder HSS erfunden. Bei dieser Methode werden eine Reihe von Blitzen abgegeben, während sich der Schlitz über das Bildfeld bewegt. Damit funktionieren auch noch Belichtungszeiten von 1/8000s. Von einem »Blitz« kann aber nicht mehr gesprochen werden, eher von einem Dauerlicht. Im Sinne der Highspeed-Fotografie ist die »Highspeed«-Synchronisation also völlig ungeeignet. 
Von großem Nutzen ist HSS dagegen in der bildmäßigen Fotografie, z.B. beim Einsatz von Aufhellblitzen im hellen Sonnenschein. 

Durch die spiegellose Sony A6000 gewinnt man 28,5mm an Auflagemaß im Vergleich zur Nikon D7000, ein Vorteil beim Einsatz kürzerer Brennweiten

Die Kamera

Früher stand die Kamera – oder besser das Gehäuse – an erster Stelle. Inzwischen ist das nicht mehr ganz so wichtig, denn die großen Kamerasysteme unterscheiden sich nur noch in Nuancen. 
Vom ganzen Stolz der Hersteller – angefangen bei der Multimulti-Blitzautomatik über einen superschnellen Autofokus bis hin zum optischen Bildstabilisator – wird in der Highspeed-Fotografie aber nicht nur nichts gebraucht, es muß sogar abgeschaltet werden. Noch nicht einmal der interne Verschluß, dessen Funktion »ausgelagert« werden muß, ist wichtig. Von allen Kamerafunktionen bleibt nur noch die Speicherung des Bildes übrig, wofür der manuelle Modus und ein Anschluß für einen elektrischen Fernauslöser ausreicht. 
Die spiegellosen Kameras (DSLM) haben die herkömmlichen Spiegelreflexkameras (DSLR) schon weitgehend verdrängt. Neben dem geringeren Gewicht ist der Hauptvorteil der Spiegellosen ihr viel kleineres Auflagemaß. Wo früher der Spiegel Platz brauchte, ist nun nichts mehr und das Gehäuse kann entsprechend flacher ausfallen. Praktisch ist auch ein klappbares Display und eine »Sucherlupe«, denn erst in der Vergrößerung kann der Fokuspunkt exakt gefunden und eingestellt werden. 
Wichtig ist natürlich eine hohe Bildqualität. Hier kommt es besonders auf eine hohe Auflösung des Sensors an, zum einen wegen der Details und zum anderen, weil in der vom Zufall geprägten Highspeed-Fotografie das Motiv oft am Bildrand liegt, so daß man um Ausschnitte nicht herumkommt. Genügend »Restpixel« sind dann von Vorteil.

Den besten Kompromiß zwischen Bildqualität und Kosten bietet derzeit der Halbformat-Sensor (APS-C, DX), der nahezu alle Anforderungen an eine hohe Bildqualität erfüllt. Die meisten Makromotive sind eher klein bis sehr klein und »passen« sehr gut auf den APS-C-Sensor. Für den Wollschweber reicht z.B. ein ABM von ca. 0,5 für eine formatfüllende Aufnahme. Ein Vollformat-Sensor würde beim selben ABM nur mehr Umfeld liefern. Also qualitätsmäßig kein wirklicher Vorteil, wenn das Foto anschließend wieder auf APS-C-Größe beschnitten wird. Haben beide Sensoren dieselbe Anzahl an Pixeln, wäre Vollformat sogar von Nachteil, weil die Auflösung durch das Beschneiden sinkt. Soll der Wolli das Vollformat ausfüllen, müßte der Abbildungsmaßstab um den Faktor 1,5-1,6 vergrößert werden. Dabei wird auch die Bewegungsunschärfe größer und die Tiefenschärfe sinkt. Vorteile hat Vollformat erst bei größeren Objekten, weil sich der ABM wegen der Auszugsverlängerung des PQS-Verschlusses nicht beliebig verkleinern läßt. Größere Objekte wie z.B. Schmetterlinge sind oft zu groß für den APS-C-Sensor und würden beschnitten. Auf einen Vollformat-Sensor würden sie hingegen passen. Ganz entfällt dieses Problem erst mit Original-PQS-Objektiven, die sich bis Unendlich fokussieren lassen. Leider sind sie auf die Dauer zu schwer für ein mobiles System. 

  • APS-C

  • KB

  • ABM vergrößert

Aufgrund der technischen Beschränkungen durch Brennweite, ABM und Abmessungen läuft es auf einen Kompromiß hinaus. Die ideale Lösung wäre ein extrem hochauflösender Vollformat-Sensor mit nicht zu großem ABM, bei dem sich das Resultat beschneiden läßt, ohne allzuviel an Auflösung zu verlieren. Kandidaten hierfür wären z.B. die Sony A7IVR bzw. die A7VR oder die Sigma fPL mit jeweils 61MP Auflösung.  
Ein anderer Vorteil ist der Dynamikumfang eines Vollformatsensors, der wegen der größern Pixel ein- bis zwei Blendenwerte über dem APS-C-Sensor liegt und teilweise 14-15 Blendenstufen erreicht. Das häufig erwähnte bessere Rauschverhalten nützt eher bei wenig Licht, und daran mangelt es in der Highspeed-Fotografie i. Allg. nicht. Ob die Vorteile des Vollformat-Sensors im Vergleich zu einem guten Halbformat-Sensor den erheblichen Mehrpreis wert sind, muß jeder selbst entscheiden. Fast alle Fotos auf dieser Website wurden mit APS-C-Sensoren von 10MP (D80), 16MP (D7000), 24MP (A6000) und 32,5MP (EOS M6 II) angefertigt.

Gerade bei Bildsensoren geht aber die Entwicklung rasant weiter und der KB-Sensor von heute ist der APS-C-Sensor von morgen. Die steigende Auflösung stellt aber immer höhere Anforderungen an die Objektive und dürfte irgendwann an eine physikalische Obergrenze stoßen. Mehr Potential als in der Steigerung der Pixelzahl liegt daher möglicherweise in der weiteren Verbesserung des Rauschverhaltens und des Dynamikumfangs.
Für die Highspeed-Fotografie wünschenswert wäre aber etwas ganz anderes, nämlich der Ersatz des mechanischen Verschlusses durch eine elektronische Lösung in Verbindung mit einem »global shutter«. Dieses Prinzip, bei dem alle Bildinformationen wie ein Schnappschuß gleichzeitig erfaßt und bis zum Ende des Auslesens unverändert bleiben, gab es bereits zuzeiten des CCD-Sensors. Allerdings erforderte er einen mechanischen Verschluß zum Schutz der Bildinformationen vor Licht während des Auslesens. 
Erst Spezialversionen wie der Interline-Transfer-CCD, bei dem die Pixelinformationen vor dem Auslesen in lichtgeschützte Bereiche verschoben werden, kam ohne mechanischen Verschluß aus. Seine Auflösung ist allerdings geringer und der Aufbau komplexer. 
Mit der Ablösung des CCD- durch den CMOS-Sensor wurde das globale Prinzip durch den »rolling shutter« ersetzt, der schon während der Belichtung zeilenweise ausgelesen wird. Das führt zu Bildfehlern bei bewegten Objekten und erschwert den Einsatz von Blitzgeräten. Diese Fehler zeigen übrigens auch Schlitzverschlüsse, während der Zentralverschluß frei davon ist. Natürlich gibt es mittlerweile auch CMOS-Sensoren mit global shutter, die ohne mechanischen Verschluß auskommen. Sie sind aber nach wie vor nur in Industrie- und professionellen Videokameras zu finden, wo sie Belichtungszeiten bis herunter in den Mikrosekundenbereich ermöglichen. 
Das Problem des »rolling shutter« ist aber durch die Erhöhung der Auslesegeschwindigkeit immer kleiner geworden. Dazu dienen neue Verfahren wie die des »stacked Sensors«. Hier wird der Bildinhalt in eine zweite Sensorebene übertragen, die wesentlich schneller ausgelesen werden kann. Mit solchen Sensoren sind einige hochpreisige Kameras ausgerüstet, wie z.B. die Sony A1, die Canon EOS R3, die Fuji X-H2s. Der stacked Sensor der Nikon D8/D9 verzichtet gänzlich auf einen mechanischen Verschluß. Diese Sensoren werden so schnell ausgelesen, daß sie sogar einen Blitz synchronisiert. Damit unterscheiden sie sich von nahezu allen anderen Sensoren, die im vollelektronischen Modus keinen Blitz auslösen.

Anmerkung: Im Nov. 2023 stellte Sony die Alpha 9 III vor, die erste Kamera mit einem globalen elektronischen Verschluß. Sie synchronisiert den Blitz bei allen Verschlußzeiten bis herunter zu 1/80000s. 

Oben das 80er Apo-Rodagon, unten ein 85er Micro-Nikkor.

Objektive

Weil weder Autofokus noch optische Bildstabilisierung benötigt wird, genügt ein ganz normales manuelles Objektiv. Natürlich muß es den Anforderungen genügen, die die modernen Sensoren an das optische System stellen. Übliche Systemobjektive besitzen aber auf der Rückseite einen mehr oder weniger langen Tubus zur Anpassung an das Auflagemaß des jeweiligen Kamerasystems. Da sich an dieser Stelle der Zentralverschluß befindet, sind solche Objektive hier nicht geeignet. Das Bild links verdeutlicht dieses Problem.
Geeignet sind dagegen Objektive, die auf diesen Tubus verzichten und dementsprechend kürzer ausfallen. Hier schlägt die Stunde der Vergrößerungsobjektive. Hochleistungssysteme wie das Rodenstock Apo-Rodagon N 4/80 oder das Schneider Apo-Componon HM 4,5/90 übertreffen bezüglich Auflösungsvermögen und Abbildungsqualität so manches Systemobjektiv.
In die Lücke bis zum ABM 1 springt das Schneider Makro-Symmar 5,6/80, das für den ABM von 0,05-1 vorgesehen ist. Optisch liegt es auf demselben Niveau wie die beiden Vorgänger. Gut geeignet sind auch die schon älteren Photare 5,6/120 und 5,6/80, die als Lupenobjektive eigentlich für den ABM>1 vorgesehen sind. Ihr Auflösungsvermögen ist noch immer legendär und sie kommen auch mit modernen Bildsensoren problemlos zurecht. Ein Vergleich ist hier zu finden.

Makro-Symmar 5,6/80

Apo-Componon 4,5/90

Leitz Photar 5,6/80

Leitz Photar 5,6/120

Makro-Symmar 5,6/80

Apo-Componon HM 4,5/90

Leitz Photar 5,6/80

Leitz Photar 5,6/120

 ABM 0,05-1

 ABM 0,07-0,5

 ABM 1-4

 ABM 0,5-2

Die Herausforderung – ein PQS-Objektiv an einer DSLR

Die oben beschriebene Anlage ist mit ihrem fixierten Abbildungsmaßstab von ca. 0,45 hervorragend für kleine Insekten geeignet. Schon bei größeren Schmetterlingen kommt sie aber an ihre Grenzen, denn ein Objekt, das breiter als 6cm ist, »füllt« den APS-C-Sensor bereits völlig aus. 
Eine Scharfstellung auf größere Distanzen wird durch die Auszugsverlängerung des Verschlusses verhindert. Hier hätte eine spiegellose Kamera durch ihr viel kleineres Auflagemaß zwar Vorteile, aber ein Großteil des gewonnenen Raumes würde durch einen Schneckentrieb wieder aufgebraucht.

Die bessere Lösung ist deshalb ein Original-Objektiv mit eingebautem Zentralverschluß, das sich von Haus aus bis unendlich fokussieren läßt. Solche Objektive sind von Rollei, Zeiss und Schneider in vielen Brennweiten erhältlich. Der Nachteil ist, daß sie groß, schwer und meist sehr teuer sind. Da es auch keinen fertigen Adapter PQS-auf-Nikon/Canon/Sony usw. gibt, bleibt wieder nur der Selbstbau.
Wie dick der Adapter werden muß, läßt sich leicht berechnen: Auflagemaß Rollei minus Auflagemaß Nikon. Unglücklicherweise besitzt Nikon eines der größten Auflagemaße, so daß der Nikon-Adapter besonders flach ausfällt. In der Realität 74,95mm-46,5mm=28,45mm. Damit kann dann bis Unendlich fokussiert werden. Natürlich dürfte es eher selten vorkommen, daß die Lichtschranke einen Kilometer entfernt steht, praktisch sollte deshalb eine Scharfstellung von 5-10m reichen. Aber hier ging es ums Prinzip.

Praktisch muß das PQS-Objektiv mit einem Nikon-Bajonett verheiratet werden, wobei der o.g. Abstand zwischen den Auflageflächen eingehalten werden muß. Die »einfache« Lösung ist, den Adapter zu verwenden, den Rollei speziell für seine Studiokamera XAct hergestellt hat. Aber der ist kaum noch zu bekommen. Statt dieses Adapters, bei dem die Bajonettkontakte schon über ein Kabel nach außen geführt wurden, kann auch ein PQS-Zwischenring zweckentfremdet werden, was allerdings eine erhebliche Arbeit bedeutet. Bleibt als letztes noch der Rollei-Umkehradapter, der leider auch nur selten für viel Geld zu erhalten ist. Insgesamt ein sehr hoher Aufwand, sowohl konstruktiv als auch mechanisch. Und finanziell sowieso, denn bei der PQS-Technik ist alles teuer.

Die Ansteuerelektronik muß sich diesmal aber nicht nur um den Verschluß kümmern,  sondern auch um die Blende. Die notwendige Powerstufe wurde in weiser Voraussicht schon auf der Rückseite der Elektronik für die tragbare Lichtschranke vorgesehen, so daß nur die Bauteile nachbestückt und die Software erweitert werden mußte.

Als Ergebnis erhält man einen Adapter, der »gerade so« noch an die Kamera paßt. Er könnte nun mit jedem Original-PQ/PQS-Objektiv bestückt werden, wie z.B. dem Zeiss Makro-Planar 4/120 HFT PQS, eines der erstrebenswertesten »Schätzchen«. Per Schneckentrieb kann es von 0,8m bis unendlich fokussiert werden und eignet sich damit nicht nur für Insekten, sondern auch für Vögel und Fledermäuse. Mittels Auszugsverlängerung kann es bis ABM 2:1 verwendet werden. Damit geht natürlich das Fokussieren bis Unendlich verloren, aber man kann nicht alles haben.

Eine ganz andere Variante wäre, den Zentralverschluß nicht zwischen Objektiv und Kamera anzuordnen, sondern vor dem Objektiv. Damit kann jedes Systemobjektiv an die Kamera angesetzt werden, das wie ein echtes PQS-Objektiv auf jede Entfernung fokussiert werden kann. Je größer aber die Frontlinse bzw. der Sensor, desto größer auch die Gefahr von Vignettierungen. Bei der Anordnung im Bild rechts befindet sich der Verschluß mit seiner lichten Öffnung von 24mm vor der Frontlinse eines AF Micro-Nikkor 200mm 1:4 D mit ca. 50mm Durchmesser. Mit dem DX-Sensor der D7000 treten aber nur kleine Abschattungen in den Ecken auf. 
Kurze Brennweiten eignen sich im Makrobereich u. U. weniger, weil der Abstand zwischen Verschluß-Vorderseite und dem Objekt je nach Abbildungsmaßstab zu klein werden kann.

Zeiss Makro-Planar 4/120 HFT PQS an der Nikon D7000 Lohn der Mühe: Das Zeiss Makro-Planar 4/120 HFT PQS an der Nikon D7000.
PQS-Adapter für Fokussierung bis Unendlich Wenig Platz: Fokus bis Unendlich
für die Highspeed-Fotografie geeignete Originalobjektive mit eingebautem Zentralverschluss Drei PQS-Objektive: links das Planar 2,8/80, in der Mitte das Zeiss Sonnar 4/150 und rechts das Zeiss Makro-Planar 4/120
PQS-Verschluss, Micro-Nikkor 4/200 AF Ein PQS-Verschluß in einem speziellen Gehäuse vor einem 200er AF-Micro-Nikkor

Alternativen

Alles, was bisher ausgeführt wurde, bezieht sich auf die »klassische« Kurzzeitfotografie mit Lichtschranke und Kurzzeitblitz. Das heißt aber nicht, daß es nicht auch anders geht. Gerade in der digitalen Fotografie, in der die Fotos als solche nichts mehr kosten, ist es u.U. erfolgversprechend, eine Bildsequenz mit dem kameraeigenen Motor aufzunehmen. Bei einer Fotofrequenz von 10B/s ist die Wahrscheinlichkeit hoch, daß ein gelungenes und scharfes Bild darunter ist (mit modernen spiegellosen Kameras und elektronischem Verschluß sind sogar noch wesentlich höhere Frequenzen errreichbar). Das empfiehlt sich besonders bei Motiven, wo sich eine Lichtschranke nur schwer aufbauen läßt, z.B. Libellen über Wasser. Ein Vorteil ist, daß jedes Objektiv verwendet werden kann und die modernen Automatiken wie AF und die optische Bildstabilisierung zum Zuge kommen. Je kleiner und schneller aber ein Motiv, desto besser schneidet die Lichtschranke ab.

Nach oben